Calcium represents a key biological signaling ion with the EF-hand loops being its most prevalent binding motif in proteins. We show using molecular dynamics simulations with umbrella sampling that including electronic polarization effects via ionic charge rescaling dramatically improves agreements with experiment in terms of the strength of calcium binding and structures of the calmodulin binding sites. The present study thus opens way to accurate calculations of interactions of calcium and other computationally difficult high-charge-density ions in biological contexts.