Ab initio molecular dynamics simulations of negatively charged clusters of 2 to 48 ammonia molecules were performed to elucidate the electronic stability of the excess electron as a function of cluster size. We show that while the electronic stability of finite temperature clusters increases with cluster size, as few as 5-7 ammonia molecules can bind an excess electron, reaching a VBE slightly less than half of the bulk value for the largest system studied. These results, which are in agreement with previous studies wherever available, allowed us to analyze the excess electron binding patterns in terms of its radius of gyration and shape anisotropy and provide a qualitative interpretation based on a particle-in-a-spherical-well model.