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Abstract

We present a dielectric continuum model that at a semi-quantitative level explains why ion

pair formation in water is favored by like sized ions over unlike sized pairs. Using both classi-

cal and ab initio continuum approaches we show that the now well-established empirical rule,

the so called “Law of Matching Water Affinities”, can be rationalized in terms of ion solva-

tion. Namely, pairing of differently sized ions is weakened due to a shadowing effect where the

larger ion shields the smaller ion from the solvent. It is shown that this empirical law ceases

to be valid for less polar solvents where strong ion-ion Coulomb interactions dominate the

pairing free energy. The presented model demonstrates that certain ion specific effects, such

as those connected with the Hofmeister series, can be qualitatively captured by classical con-

tinuum electrostatics although a fully quantitative description would require explicit molecular

treatment of the solvent.
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The degree of ion pairing in solution is the result of a subtle balance between ion-solvent inter-

actions and Coulomb forces between cations and anions.1,2 While the former keep the ions isolated

in solution, the latter enable ion pairing in the form of contact as well as solvent separated pairs. In

solvents with a low dielectric constant this balance tends to be tilted toward strong ion pairing with

the extreme case of εr = 1, where solvent effects disappear. Water as a solvent with εr = 80, is ap-

proaching the other extreme, i.e., infinite dielectric constant, where ion-ion Coulomb interactions

(but not solvation!) are scaled to zero. Nevertheless, ion pairing in water does take place insofar

as is indicated by the occurrence of distinct peaks in the cation-anion radial distribution functions,

hinting at contact and solvent separated pairs.3–5 While the number of ion pairs obviously grows

with increasing salt concentration, the strength of pairing at a given concentration is strongly ion

specific. That is, it depends on the chemical nature of cations and anions.1,5,6 Phenomenologi-

cally, this ion specificity has been formulated as an empirical rule, the so called Law of Matching

Water Affinities.7,8 It states that monovalent cations and anions of similar hydration energies, i.e.,

(roughly speaking) of similar size, pair more strongly than dissimilar ions. It is the purpose of the

present study to provide, using a dielectric solvation model and ab initio calculations, an elemen-

tary microscopic interpretation of this remarkably operational empirical rule, which has, however,

lacked theoretical justification.

The Law of Matching Water Affinities is reflected in thermodynamic data for bulk electrolyte

solutions as shown in Figure 1 e.g., exchanging cesium with sodium in contact with iodide (big-big

→ big-small) is unfavorable while the opposite is true for fluoride (big-small→ small-small). This

behavior is also reflected in explicit solvent molecular dynamics (MD) simulations as shown in

Figure 1, right, for the free energy of interaction between NaF, CsF, NaI and CsI. From explicit

solvent MD simulations as well as from analysis of ion coordination structures it follows that ion

specificity is intimately connected to ion-water and water-water interactions.5,9,10

While explicit solvent models account in molecular detail for solvation changes when ions

form a contact ion pair, this is not the case for the widely used primitive model (PM) of electrolytes

where ions are described by hard, charged spheres in a uniform dielectric continuum.12 Here, the
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Figure 1: Left: Excess chemical potential difference of replacing iodide with fluoride for cesium
and sodium ions in aqueous solutions. Derived from experimental activity coefficients11 (β =
1/kT is the inverse thermal energy). Right: Radial distribution functions, g(r), for sodium and
cesium halides calculated using explicit solvent MD simulations.

interaction between any two ions is given by a solvent mediated Coulomb potential, u ∝ q1q2/εrr

where εr is the relative dielectric constant, q1 and q2 are the charges and r is the distance between

them. Thus, the critical parameter that determines the ion pairing strength in the PM is the distance

of closest approach, i.e., the sum of ionic radii, a1 + a2. In conflict with the idea of matching

radii, this implies that big–small combinations will always lead to strogner pairing than big–big

combinations. The PM is often employed successfully to describe bulk electrolyte properties and a

common, pragmatic, approach is to fit the ionic radii to experimental data. Table 1 shows examples

of distances of closest approach that best match experimental osmotic and activity coefficients for

two halide salts of sodium and cesium.13 These lead to inconsistent bare ionic radii, within the PM,

as the sums of the two diagonals in Table 1 are not equal. The observed distances shown in Table 1

are a consequence of the fact that sodium–fluoride (small–small) and cesium–iodide (large–large)

pairs are stronger than sodium–iodide (small–large) and cesium–fluoride (large–small) pairs: The

Law of Matching Water Affinities.

Can one account at least semi-quantitatively for these observations within a continuum solvent

model? Consider a spherical cavity of radius a and dielectric constant εi immersed in a continuum

solvent of dielectric constant εr. The electrostatic free energy of interaction between a pair of

charges qi and q j located at positions ri and r j inside the sphere is then described by an infinite
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Table 1: Typical cation-anion distances of closest approach, found when fitting measured bulk
electrolyte data to the primitive model of electrolytes via Metropolis Monte Carlo simulations in
the concentration range 0–1 molar.13

Fluoride Iodide
Sodium 3.4 Å 4.4 Å
Cesium 4.1 Å 3.4 Å

order multipole expansion:14–16

wi j =
qiq j

4πε0εi

(
1
ri j

+
∞

∑
n=0

(rir j)n

a2n+1 Γ

)
ri∧ r j < a (1)

where ε0 is the permittivity of vacuum, Γ = (εi−εr)Pn(cosθ)
εr−εin/(n+1) and Pn(cosθ) is the Legendre polynomial

evaluated for the angle, θ between ri and r j. The solvation free energy for each charge is given by

G j =
q2

j

8πε0εi

∞

∑
n=0

r2n
j

a2n+1 Γ (2)

which for r j = 0 reduces to the well-known expression for the Born energy.

Imagine the process of bringing two isolated, solvated ions into the contact distance r12 =

a1 +a2 so that they form an ion pair with a common, spherical solvation shell as shown in Figure 2.

The pairing free energy change of this process is ∆Gpair = w12 + G1 + G2−GBorn
1 −GBorn

2 , where

a1 q1

a2

q2

∞

a
b
q1

b
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ǫr

ǫi
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Figure 2: Pairing model where two solvated ions at infinite separation are brought into close con-
tact, sharing a single cavity.

GBorn
j = G j,r j=0 is the Born energy as defined above. The last two terms for ∆Gpair thus describe

the solvation energies of the two isolated ions. While ∆Gpair can be evaluated from Eqs 1 and 2,

we can for comparison also approximate the pairing energy by describing the formed ion-pair

as a point dipole, with moment µ = q1r1 + q2r2, using Onsager’s solvation model.17,18 This is
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equivalent to neglecting terms in the summations above, for n > 1. Following the thermodynamic

cycle illustrated in Figure 3 we obtain the pairing free energy:

∆Gdipole
pair ≈

1
4πε0

{(
− µ2

2a3 +
q2

1
2a1

+
q2

2
2a2

)(
1
εi
− 1

εr

)
+

q1q2|q1−q2|
2εiµ

}
(3)

The volume of the ion-pair solvation shell is set according to a = 3
√

a3
1 +a3

2 · s where s is a scaling

b b µ
−q1q2|q1−q2|

2ǫiµ

b b µ
∆Gpair

∑
Gborn

µ2

2a3 (
1

ǫi

− 1

ǫr

)

ǫi

ǫr

Figure 3: Thermodynamic cycle for obtaining the pairing free energy when the ion-pair is treated
as a point dipole.

parameter that, in an approximative manner, accounts for the fact that the shell around the ion

pair is not spherical. It should be stressed that the particular choice of s, relatively close to unity,

does not influence the qualitative picture provided by the model. Note also that we do not account

for the cavitation free energy stemming from changes in sizes and shapes upon pairing.19 These

contributions give only minor corrections and do not change the qualitative picture.

Using our pairing corrected primitive model (PCPM) we investigate the pairing free energy for

monovalent ions as a function of the ratio, χ = rA/rB, between the individual ion radii. As shown

in Figure 4, and in accord with the Law of Matching Water Affinities a free energy minimum is

observed when the two ions have the same size (χ = 1). The major effect that is captured by

the presented dielectric model is that the solvation shell of the smaller ion is diminished by the

presence of the adjacent larger ion (the shadowing effect). This effect is missing in the PM. As can

be seen in Figure 4, this solvation effect is largely responsible for the minimum occurring when

the ionic radii are roughly equal.

Table 2 shows pairing free energies for three different size combinations: small–small, small–
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Figure 4: Free energy decomposition of bringing two oppositely charged mono-valent ions, A and
B, into a shared solvation shell. The dotted, red line shows the result from the dipole approach cf.
Eq. 3. (aB = 2.0 Å, εi = 1, εr = 80, s = 1.31)

big and big–big. Qualitatively, these combinations correspond to the before mentioned systems of

NaF, NaI (or CsF) and CsI, respectively. As in the PM the direct ion-ion term, Eq. 1, monoton-

ically decreases as the radii becomes larger, while for like sized combinations the solvation free

energy change is relatively modest. For unlike sized pairs, however, the cost of bringing the small

highly solvated ion into contact with a large, poorly solvated ion controls the pairing free energy

and gives rise to unfavorable pairing interactions for χ 6= 1. In contrast, as εr → ε0 the ion-ion

interaction term, Eq. 1, becomes increasingly dominant as the solvation contribution goes to zero.

This explains why the Law of Matching Water Affinities does not apply for non-polar solvents with

dielectric constant approaching that of vacuum.

Table 2: Pairing free energies for differently sized ion-pairs according to Eqns. 1 and 2. asmall =
1.5 Å, abig = 2.0 Å, |q|= 1e, s = 1.3, εi = 2. In units of kT .

β∆Gpair β∆G1 β∆G2 β∆w12 β∆Ggas
pair

small–small -6.2 3.4 3.4 -13.0 -93
small–big 3.5 19 -3.7 -11.8 -80
big–big -4.7 2.6 2.6 -9.8 -70

Given a fixed value for the radius of one ionic species, ions with radii of similar magnitude,

thus have a lower free energy at contact than ions of dissimilar radii. This result is the opposite

to that of the PM, which would generally predict greater negative interactions as the ionic radius

of one species decreases with respect to the other. The same effect is seen in larger ions, though
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the magnitudes of the free energy changes are diminished (roughly proportional to the inverse

lengthscale of the ions).

These results are further supported by ab initio calculations of ion pair formation using the po-

larizable continuum model (PCM).20 Similarly to our PCPM approach described above the pairing

free energy is calculated from the difference between the isolated ions and the associated pair. As

an improvement, the solvation cavity is no longer spherical but reflects the electronic structure of

the encompassed ion(s) and, in addition, PCM takes into account cavity free energy in the sol-

vent. Motivated by the experimental backing of calibrated MD force-fields, the contact distances

between pairing ions are set equal to the first g(r) maximum from explicit solvent MD simulations

as shown in Figure 1. As shown in Table 3 the free energy gain of replacing cesium with sodium is

−3 kT for fluoride in water, while it is +4 kT in the case of aqueous iodide. Hence, the PCM in-

deed captures the big–big preference over big–small but only in a highly polar dielectric medium;

in vacuum the distance of closest approach again determines the pairing free energy, precisely as

in our classical model for non-polar media.

Table 3: Pairing free energy differences between cesium and sodium halides obtained from: MP2-
level PCM calculations, the presented PCPM using radii as in the MD simulations21 and finally,
explicit solvent MD simulations c.f. Figure 1. In units of kT .

β∆∆GCs→Na

PCM PCPM MD
εr = 80 εr = 1 εr = 80 SPC/E

Fluoride -3.1 -52 -0.73 -1.5
Iodide 4.4 -29 5.2 3.0
Size rule obeyed yes no yes yes

The models presented so far – classical as well as quantum mechanical – treat the solvent as

a dielectric continuum and, hence, are insensitive to the chemical structure of the solvent model-

cules. Yet they capture the essential details of the empirical Law of Matching Water Affinities,

which suggests that the basic physical mechanism is not specific to the molecular nature of the

(polar) solvent. Thus we would anticipate that the proposed “shadowing” mechanism is present in

8



Mikael Lund et al. Dielectric Interpretation of Specificity . . .

other polar solvents. Nevertheless, the molecular structure of the solvent does come into play for

capturing quantitative details of ion pairing and hydration (such as the different hydration energies

of cations vs. anions of the same valency and size5,22).

Calculation Details: MD simulations were performed in the NPT -ensemble using Gromacs

version 4.0.523 with 809 water molecules and one pair of the studied salt (NaF, NaI, CsF, CsI). Sim-

ulation lengths were of 150 ns (2 fs time steps), and held at 300 K and 1 atm using the velocity-

rescaling thermostat and the Berendsen barostat, respectively. For water we used the SETTLE

constrained SPCE model24,25 while for ions the forcefield described in our previous paper21 was

employed. Particle-Mesh Ewald summation was used to account for long-range electrostatic in-

teractions. Ab initio calculations were performed at the second-order Møller–Plesset perturbation

theory level (MP2), using the aug-cc-pVTZ basis sets for sodium with additional core-valence ba-

sis functions (cc-pCVTZ) added for fluorine, aug-cc-pvTZ-PP for iodine26 and optimized valence

basis set with effective core potentials for cesium.27 Ion pairing free energies were evaluated as

the difference between the free energy of the solvated contact ion pair and the free energies of the

separately solvated cation and anion in water. Anion-cation distances were taken from MD simu-

lations for the contact ion pairs in explicit water (see above). Water was described as a polarizable

continuum solvent using the PCM model20 within the self-consistent reaction field approach. PCM

calculations were performed using the Gaussian 03 program package using default parameters.28
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