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          There has been a lot of discussion about biological water recently. Books
1-2

 and reviews
3-

5
 were written in the past years and a special issue of the Journal of Chemical Physics was 

dedicated to the topic in 2014.
6
 Interestingly, papers on biological water are mostly confined to 

chemistry and  physics journals, being remarkably rare in biological or biochemical literature. 

So, what is actually the biological water, we physical chemists are so concerned about? 

Definitions vary from “soft” to “hard” ones. A soft definition describes biological water as any 

water around a biomolecule (i.e., protein, DNA or RNA, or a piece of a cellular membrane) that 

has properties distinct from those of the aqueous bulk.
7-10

 More hard definitions operate with 

mutual tailoring of thermodynamic and dynamic properties of the biomolecule and surrounding 

waters,
11-15

 and even with covering the protein by a shell of functional water molecules which 

can “slave” its motions
5
 and propagate to considerable distance.

16
 Finally, the recent hardest 

interpretations invoke in their extreme form, which can hardly be considered as strictly scientific 

any more, the notion of cellular water as a distinct species which itself is able to carry the 

biological functionalities.
17-20

  



 2 

There is little doubt that a layer of non-bulk water exists around a biomolecule.
7
 The 

relevant question is how thick such a layer is and to what extent its properties differ from those 

of the aqueous bulk. Let us first get a semi-quantitative estimate of the thickness, focusing on 

electrostatic interactions which dominate in water. The range of these interactions is governed by 

the Debye screening length,
21

 which amounts to less than 1 nm for the physiological ionic 

strength of about 150 mM. The physiological solution thus has a remarkable ability to screen out 

electrostatic interactions, which could hardly propagate beyond some 1-3 water molecules from 

the surface of the biomolecule. Still, several solvent layers can represent a non-negligible 

fraction of available water in the crowded cellular environment.
4
 Moreover, individual 

biomolecular functional groups can come close enough to each other such that topological 

characteristics of the protein or DNA surface can in principle combine with properties of 

interfacial water molecules in-between these groups.
22-23

 

For the above reasons, the relevant question is not only how many water molecules are 

influenced by the biomolecule, but also how much. Leaving aside the small number of water 

molecules trapped in protein concave pockets of varying depth,
24-26

 the remaining ~90 % of 

interfacial water molecules are only modestly slowed down by the presence of the 

biomolecule.
10, 27

 Indeed, previous reports of a more dramatic, orders of magnitude slow-down
5, 

28
 can be attributed largely to motions of the protein itself rather than to water.

27
 It is thus safe to 

conclude that the protein surface influences rather weakly the surrounding water molecules. 

Various spectroscopic methods, as well as molecular dynamics simulations, report detectable 

changes in the immediate water shell next to the protein compared to bulk water behavior.
5, 7, 10-

13, 15
 Changes in next solvent layers grow progressively weaker and eventually, at around 1 nm 
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from the protein surface and beyond, become accessible largely to techniques with a sufficiently 

large “yardstick”, such as the terahertz or dielectric spectroscopies.
13, 16, 29-30

   

Two messages follow from our analysis. The first one, addressed to biologists and 

biochemists, who tend to focus their attention primarily to the biomolecules, is that water does 

matter. Moreover, since the interfacial water layer covering the biomolecule has distinct 

properties from the aqueous bulk it is often not satisfactory to describe the aqueous solvent 

merely as a structureless continuum with a dielectric constant of bulk water. Such an approach 

can capture the longer-range dielectric effects of the solvent on the biomolecule,
31

 nevertheless, 

in many cases local interactions between functional groups at the solute surface with adjacent 

water molecules are important and require atomistic description.
32

 The good news is that in most 

cases one or two layers of explicit “granular” waters around the solute surrounded by a dielectric 

continuum represent a satisfactory description of the solvent effects.
33-34

 

The second and arguably more important message is addressed to our community of 

physical chemists. An attempt to formulate it in a somewhat lighter tone is presented in Figure 1. 

While water including its interfacial layer,
15

 as well as ions and osmolytes,
35

 plays a key role in 

establishing the homeostasis, it is primarily the biomolecule itself which carries the biological 

function. It is a fact that individual water molecules and ions in binding pockets of enzymes can 

play an important role.
36

 However, there is little direct evidence that collective motions of the 

hydration layer are decisive for protein function, potentially save for extreme conditions of 

strong dehydration or cooling
11, 14-15, 37-38

 (although even there the degree of water involvement in 

biological functionality is a matter of debate
39-40

). As physical chemists who naturally tend to 

understand water better than biomolecules we may sometimes have a tendency to overemphasize 

the role of the former at the expense of the latter. For this almost psychological reason and, more 
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importantly, due to the scientific reasoning outlined above I would argue that the term biological 

water should be dropped. It is perfectly justifiable to talk about water in biology and discuss the 

role of interfacial water around biomolecules with its distinct properties. However, using the 

term biological water with all its connotations toward a hypothetical state of cellular “vicinal 

water” carrying biological function
41-42

 might be bringing us dangerously close to the long 

overcome concept of “vis vitalis”.
43-45

    

 

Figure 1: A cartoon representing the key message of the Viewpoint: Water (with salt ions and 

osmolytes) is essential for proper functioning of biological molecules, but the functionality 

dominantly belongs to the biomolecule itself (represented as a fish in my amateurish drawing). 
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