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Abstract

Charge scaling has proven to be an efficient way to account in a mean-field way for electronic polarization by
aqueous ions in force field molecular dynamics simulations. However, commonly used water models with dielectric
constants over 50 are not consistent with this approach leading to ’overscaling’, i.e., generally too weak ion-ion
interactions. Here, we build water models fully compatible with charge scaling, i.e., having the correct low-frequency
dielectric constant of about 45. To this end, we employ advanced optimization and machine learning schemes in
order to explore the vast parameter space of 4-site water models efficiently. As an a priori unwarranted positive result,
we find a sizable range of force field parameters that satisfy the above dielectric constant constraint providing at the
same time accuracy with respect to experimental data comparable with the best existing 4-site water models such
as TIP4P/2005, TIP4P-FB, or OPC4. The present results thus open the way to the development of a consistent
charge scaling force field for modelling ions in aqueous solutions.
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Water molecules are ubiquitous in living systems and1

technological applications due to their physicochemical2

properties that make water a unique universal solvent.13

Water thus provides an environment where life and chem-4

istry take place by dissolving molecules and ions, allowing5

specific molecular and supramolecular structures, and di-6

rectly contributing to stabilizing interactions and catalyz-7

ing reactions.8

Force field molecular dynamics simulations (FFMD) rep-9

resent a powerful tool for modeling these biological and10

technological processes with atomistic resolution at fem-11

tosecond to millisecond timescales. First simulations in-12

volving water data back to the early days of FFMD.2 Con-13

sequently, the development of empirical potentials for wa-14

ter has been a recurrent topic in the past decades (e.g,15

TIPS,3 SPC,4 TIP3P,5 SPC/E,6 and TIP4P7 models),16

and far from settled8 (e.g., the more recent TIP4P/2005,917

TIP4P-FB,10 and 4-site OPC11 (OPC4) models). Aque-18

ous solutions have proven to be difficult systems to de-19

scribe accurately and are thus an active area of research.12
20

Even pure water behavior is not easy to model such that21

it accurately covers the full range of biologically relevant22

thermodynamic conditions.823

Commonly used water potentials were typically opti-24

mized to recover selected experimental or calculated data.25

Therefore, they reproduce these target properties at the26

optimization conditions, but there is no guarantee that27

they will also reproduce other properties or the target28

properties at different thermodynamic conditions. The29
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optimization process traditionally focuses on properties1

derived from the density13 and the self-diffusion coeffi-2

cient,14 while other properties, such as the surface tension3

or the dielectric constant,15 are given a secondary role or4

not optimized at all. It is thus not surprising that their val-5

ues vary significantly between existing models11,16 despite6

their physical relevance.17
7

In particular, the dielectric constant (εr) is an essential8

property dictating how interactions between charged par-9

ticles are attenuated in a given medium. The dielectric10

constant can be approximately split into two contributions11

of different origins.18
12

εr = εNεe (1)

The nuclear contribution to the dielectric constant (εN)13

accounts for the “slow” rearrangement of atomic nuclei14

of water molecules as a response to changes in local or15

external electromagnetic fields. In contrast, the electronic16

contribution to the dielectric constant (εe) accounts for17

the “instantaneous” response of the electronic clouds of the18

water molecules and can be approximated by the square of19

the refraction index19 (εe ≈ n2
= 1.78).20

20

FFMD that lack polarization terms account only for21

the nuclei contribution of the dielectric response of the22

medium. One could potentially employ the computa-23

tionally more demanding polarizable force fields such as24

Drude21 or Amoeba22 to capture the electronic contri-25

bution of the response. As an alternative, one can in-26

troduce the missing electronic polarization in a mean-27

field way denoted as the electronic continuum correction28

(ECC).20,23,24 Within this approach, the system is im-29

mersed in an electronic dielectric continuum, which is30

mathematically equivalent to scaling the ionic charges by31

the inverse square root of the electronic part of the dielec-32

tric constant of the medium (q/√εe).33

The ECC framework circumvents the problem of explic-34

itly accounting for electronic polarization for interactions35

between dissolved ions or charged groups. There is, how-36

ever, a catch – existing non-polarizable water models often37

exhibit values of dielectric constants larger than εN , effec-38

tively transferring (part of) the missing εe to εN . They also39

possess water dipole moments larger than the gas phase40

value (albeit typically smaller than the value in the liq-41

uid).25 Employing currently available water models thus42

results in an artificial overscaling when used within the43

ECC approach.23
44

Within this study, we succeeded in developing a class45

of 4-site water models compatible with the ECC approach46

(i.,e, possessing εr ≈ 45), which are comparable in predict-47

ing experimental observables to the best of the existing48

4-site water models (possessing significantly larger values49

of εr). Considering the above constraint of a low dielectric50

constant, it was not clear from the onset whether such a51

model can be developed.52

Our target 4-site water models are fully defined by 6 pa-53

rameters, see Table 1. Similarly, as in the TIP4P family54

of models, these are the Lennard-Jones parameters (i.e.,55

σ and ε) on the oxygen atom (with no explicit van der56

Waals terms on the hydrogens), the charge on each of the57

hydrogen atoms (qH) (that also defines the charge on the58

dummy atom qM = −2qH) and the intramolecular param-59

eters. Namely, these are the oxygen–hydrogen (dOH) and60

oxygen–dummy atom (dOM) distances and the hydrogen-61

oxygen-hydrogen angle (θ). Note that the dummy atom62

is placed at the bisector of the angle θ in the direction63

toward the hydrogen atoms.64

Table 1: Optimized parameters with boundaries and seeding
values.

Parameter Units Boundaries Initial
σ nm 0.3050–0.3250 0.3150
ε kJ/mol 0.5000–1.0000 0.7500

qH e− 0.3500–0.7000 0.5500
dOH nm 0.0900–0.1000 0.0960
dOM nm 0.0120–0.0180 0.0150

θ deg 100.00–110.00 105.00

On the technical side, developing an empirical force field65

is a computationally expensive and time-consuming en-66

deavor, primarily due to the large number of simulations67

required for testing extensive sets of parameters. For us to68

effectively tackle water force field development, we need69

a framework that reduces the number of simulations ul-70

timately performed while still being able to localize the71

optimal regions of the parameter space. To this end, we72

have developed an automated framework that efficiently73

avoids sampling sub-optimal regions of parameter space74

using a combination of artificial intelligence (AI) tools and75

other advanced optimization methods (Figure 1).76

To avoid any bias and to critically evaluate our devel-77

oped framework for sampling the parameter space, we do78

not explicitly assume any concrete relationship between79

parameters and target properties when starting the opti-80

mization process (although such constraints could be eas-81

ily incorporated). Under such conditions, random walkers82

(RW) are useful for an initial sampling of the parame-83

ter space and for gathering information about their rela-84

tionship with target physical properties. Additionally, RW85

improves simulation stability because it uses the previous86

step molecular configuration as a starting point for new87

simulations. This is an important feature when using an88

automatic framework. RW simulations started from the89

parameters presented in Table 1. In addition, boundaries90

were set to keep the water geometry and physical proper-91

ties within reasonable limits, see Table 1. The resulting92

parameter space is large enough to encompass both good93

as well as less optimal regions without enforcing initial bi-94

ases while simultaneously avoiding sampling of physically95

unreasonable regions. In particular, to sample the present96

6-dimensional space, we performed using RW 1000 simu-97

lations at 300 K and 1 bar, exploring a relatively wide εr98

range.99

Once the parameter space is sparsely sampled by the100

above approach, a second phase begins where we optimize101

the process of generation of parameters using the differen-102
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Figure 1: Scheme of the program routine used to generate new parameters.

tial evolution (DE) algorithm.26 This algorithm generates1

new parameter sets or points as a linear combination of2

the parameters from the best points of the available popu-3

lation, i.e., the previously obtained points. Such a method4

efficiently parallelizes the optimization process while simul-5

taneously improving the sampling capacity, which is crucial6

when dealing with high-dimensional problems such as force7

field development. The price to pay is that such parame-8

ter generation, being stochastic in nature, does not ensure9

that the new candidate is necessarily better than the exist-10

ing points. Only when the generated candidate improves11

the quality of the parameters in terms of the accuracy of12

the simulated target properties is used in subsequent steps13

by DE. The optimization process is finished once the popu-14

lation of parameters has reached the desired convergence.15

In this work, this corresponds roughly to 4500 sets of pa-16

rameters. Considering that one needs to ultimately test17

the generated parameters by performing FFMD and that18

DE may generate (particularly at the beginning of the op-19

timization process) points which far from optimal regions,20

there is a need for further streamlining the whole process.21

The parameter convergence can be significantly accel-22

erated, i.e., the number of simulations needed to be per-23

formed can be reduced if we introduce a method that esti-24

mates the output results for the DE suggested parameter25

sets or points without actually running the simulations.26

As shown in Figure 1, we can use a mapper function to27

predict the outcome of the candidate such that if the pre-28

dicted outcome is worse than a pre-defined value of the29

target cost function, the program skips the actual simula-30

tion and directly generates a new candidate. The mapper31

function used in this work is a fully connected multilayer32

neural network. The input layer vector contains all our33

parameters normalized from 0 to 1. The ReLu activation34

function is used in the four hidden layers connected by a35

dropout layer with a rate of 0.10, each layer having 4036

nodes which cannot have a bigger norm than 5.0. A linear37

activation function is used for the output layer. Finally, the38

neural network is trained using early stopping such that we39

avoid possible overfitting while conserving the prediction40

capacity of the neural network.27
41

In this work, we build the neural networks used as map-42

ping functions employing the data obtained from all sim-43

ulations performed so far. As creating neural networks44

is very fast compared to performing simulations, they are45

recreated whenever new data is available, i.e., when new46

simulations are performed. While initially the neural net-47

work’s performance is not yet optimal, even at this point,48

it is often sufficient to discriminate bad points. Also, the49

fact that good points are occasionally wrongly rejected50

does not affect the convergence significantly since these51

can be sampled at a later time as the prediction capability52

of the neural network improves upon being trained with53

an increasing amount of data. More data also reduces54

overfitting, which would otherwise negatively impact the55

prediction capabilities of the neural network. Using the fi-56

nally obtained well-performing neural network, an efficient57

refinement algorithm described in the Supporting Informa-58

tion was used to increase the sampling capacity further, im-59

proving the obtained water models. A point is considered60
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better than a previous one when it lowers a cost function1

that expresses the weighted difference between reference2

and simulation values for our selected target experimen-3

tal properties, see Table 2. Note that for the diffusion4

constant DOW , we have scaled the experimental value14
5

used for comparison to adjust to the effect of the finite6

size of the simulated unit cell.28 For optimization of the7

dielectric constant, the cost function (CECC) considers as8

εr only the nuclear contribution to the experimental dielec-9

tric constant to be compatible with the ECC approach.23
10

Otherwise, εr is not included in the cost function (CG).11

Our cost function reads as12

CX = 10
N

∑
i=1

fi ⋅wi, (2)

where fi and wi are the loss function and weight for each13

property, respectively. Here, we use mean absolute per-14

centage error (MAPE), normalized to 1, as a loss func-15

tion to calculate the deviation between a given simulation16

property and experiments. Being a percentage-based met-17

ric, it is scale-independent, making it useful for comparing18

the accuracy of properties on different scales. The cost19

function is a weighted average, see equation 2, where the20

weights are normalized to sum to 1.21

Table 2: Reference properties and functional parameters used
in the optimization process. ρ1bar are density values at 1 bar
from 260 K to 360 K every 20 K. εr is the relative permittivity
according to the ECC approach.23 DOW is the experimental
self-diffusion coefficient of water at 300 K and 1 bar account-
ing for our simulation of 832 water molecules using Hummer-
Yeh periodic boundary conditions correction.28 rdf1p and rdf1h
are the position and height of the first oxygen–oxygen RDF
peak. The weights of the properties, ensuring a balanced
sampling of all the properties, are normalized to sum to 1. a

The weights correspond to CECC.

Values Units Loss function Weighta

ρ1bar Table S2 kg/m3 MAPE 0.667
εr 44.5 — MAPE 0.111

DOW 2.16E-5b cm2/s MAPE 0.111
rdf1p 0.280 nm MAPE 0.0555
rdf1h 2.58 — MAPE 0.0555

All FFMD simulations for the optimization process were22

performed using the GROMACS2019 molecular dynamics23

package.29 The number of water molecules in the cubic24

simulation box is 832. This number was chosen because25

it is small enough for an efficient optimization process but26

large enough (i.e., minimum unit cell size of 2.70 nm) to27

fulfill the minimum image convention and the correspond-28

ing cutoffs. Namely, we employed an interaction cutoff of29

1.2 nm for the Particle Mesh Ewals (PME)30 and the PME30

Lennard-Jones schemes that take into account the long-31

range electrostatic and van der Waals interactions. We32

used the leapfrog algorithm with a timestep of 2.0 fs and33

a total simulation time of 21 ns. The first nanosecond was34

considered equilibration and skipped for the analysis. The35

isothermic-isobaric (NpT) ensemble was enforced using the36

Nosé-Hoover thermostat31 with a relaxation time of 1.0 ps37

and the Parrinello-Rahman barostat32 with a compressibil-38

ity of 5E-5 bar−1 and a relaxation time of 5.0 ps.39

The results of the optimization process are summarized40

in Figure 2. A total of 1343 parameter sets were gen-41

erated within the optimization process possessing εr val-42

ues between 40 and 50, i.e., very close to the value of43

45 fully compatible with the ECC approach. From these,44

there is a sizable region in the parameter space with an45

acceptably small deviation from experiments (CECC < 0.7).46

This region includes 791 points. For comparison, a widely47

used 3-site model TIP3P possesses a much larger value of48

CG = 1.973. To further illustrate the performance of these49

points, we categorize them in two additionally constrained50

regions with CECC < 0.5 and CECC < 0.3. As discussed be-51

low, the latter corresponds to models with performance52

comparable to that of current state-of-the-art 4-site wa-53

ter force fields. The optimal ECC water force field region54

with CECC < 0.3 occupies a well defined region of param-55

eters σ ≈ [0.315−0.316] nm, ε ≈ [0.65−0.825] kJ/mol,56

qH ≈ [0.51 − 0.64] e−, dOH ≈ [0.90 − 1.0] nm, dOM ≈57

[0.135− 0.180] nm, and θ ≈ [106◦ − 110◦]. Also, note58

that the 50 best-performing models are spread fairly evenly59

in this optimal region. This suggests a rather flat cost-60

optimal region in the parameter space compatible with61

ECC. An extended view of the sampled parameter space62

as a function of the resulting cost function is presented in63

Figure S2.64

To contextualize our optimal region, we compare its per-65

formance to that of existing state-of-the-art 4-site water66

models simulated under the same conditions (the empty67

black symbols in Figure 2 correspond to TIP4P/2005 (○),68

OPC4 (□), and TIP4P-FB (△)). Two of these water mod-69

els (i.e., TIP4P/2005 and TIP4P-FB) are of a fixed gas70

phase geometry, while OPC4 and our models optimize the71

water geometry parameters (see Table 3 for a complete list72

of their parameters). Note that σ and ε values and the73

charges qH of all these water models fall within a narrow74

region for CECC < 0.7, which seems to be highly preserved75

(especially for σ) for water models.16 The bond param-76

eters dOH and dOM of these models also fall within the77

optimal region with the exception of dOM for TIP4P-FB78

that is 30 % smaller. Finally, the θ parameters of these79

models are at the edge of our optimal region. In summary,80

our results demonstrate that despite the constraint of the81

target εr compatible with ECC, the optimal parameter re-82

gion is sizable and robustly defined.83

Among all the ECC compatible models in the opti-84

mal region (CECC < 0.3), we present here in detail one85

of the best performing models in terms of the cost func-86

tion (CECC =0.231/CG =0.262) while possessing a balanced87

structural, thermodynamic, and dynamic behavior, see Ta-88

ble 4. The quality of our model, which we label as89

ECCw2024, is comparable to that of existing 4-site mod-90

els such as TIP4P/2005, OPC4, or TIP4P-FB, see Table 491

and Figure 3. This is a non-trivial result, allowing further92

force field development with a water model fully compat-93

ible with the ECC framework, i.e., possessing a dielectric94
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Figure 2: Minimum convex polygon (convex hull) that contains all points inside a region for selected pairs of parameters or properties:
A) σ and ε, B) qH and dOH , C) θ and dOM , and D) mean percentage errors of DOW and ρ. The regions are defined by the scoring
values points: blue (CECC < 0.7), orange (CECC < 0.5), and red (CECC < 0.3). The green symbols (×) are our best 50 points with
ECCw2024 denoted as (⭑). The black open symbols correspond to TIP4P/2005 (○), OPC4 (□), and TIP4P-FB (△).

Table 3: Parameters of the water models used in this publica-
tion. TIP4P/2005 and TIP4P-FB have the gas phase molec-
ular. OPC4 and ECCw2024 allow different molecular geome-
tries during their optimization.

Param. ECCw2024 TIP4P/2005 TIP4P-FB OPC4
dOH[nm] 0.092084 0.09572 0.09572 0.08724

θ [deg] 108.7392 104.52 104.52 103.60
σ [nm] 0.315480 0.31589 0.31655 0.316655

ε[kJ/mol] 0.761154 0.7749 0.74928 0.89036
qH[au] 0.605689 0.5564 0.52587 0.6791

dOM[nm] 0.016388 0.01546 0.010527 0.01594
µ[D] 2.167631 2.305097 2.427804 2.479542

QT [DÅ] 2.444435 2.296802 2.170775 2.299607

constant of about 45. Table S2 contains the numerical1

values for each of the evaluated properties for these mod-2

els.3

Going into further detail, the oxygen–oxygen radial dis-4

tribution functions (RDF) are presented in Figure 3A. The5

four water models yield very similar results, particularly6

within the first coordination shell. They all fit well the7

position of the experimental position of the first peak8

(0.280 nm) but overshoot its height as expected due to9

Table 4: Results are provided as mean absolute percentage
errors MAPE (%) at different thermodynamic conditions. Ra-
dial distribution function (rdf), viscosity (η), and surface ten-
sion (γ) correspond to 300 K and 1 bar. The melting point
temperature is at 1 bar. Finally, the comparison between
water models is done employing the cost function CG, see
equation 2, without including the relative permittivity. Lower
values of CG mean better performance of the water model
(for comparison, the 3-site TIP3P model yields a very high
value of CG = 1.973). Note that the properties used in CG are
provided in Table 2 and that the MAPE values are normalized.

Property ECCw2024 TIP4P/2005 OPC4 TIP4P-FB
ρ1bar 0.072 0.118 0.233 0.085
ρ300K 0.173 0.075 0.034 0.012
DOW 7.0 3.1 7.3 6.6
rdf1p 1.429 1.429 0.714 1.486
rdf1h 25.6 24.2 21.5 25.8

η 0.106 2.456 5.982 3.420
γ 5.26 2.17 2.71 3.79

Tmelt 6.23 8.48 10.3 11.0
CG 0.262 0.208 0.248 0.260

the lack of many-body interactions and potentially other10

effects.11
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Figure 3: Water models performance in comparison with water experimental results. A) The radial distribution function33 at 300 K
and 1 bar. B) density isobar at 1 bar.13 C) DOW isobar at 1 bar.14 D) εN isobar at 1 bar.15,19 *Periodic boundary conditions
correction.28

Figure 3B shows the temperature dependence of the1

density at 1 bar. All models perform well between 300 K2

and 340 K. In addition, our model matches the experiment3

within ≈2 kg/m3 all the way to 240 K. At low tempera-4

tures, this fixes the ≈5 kg/m3 deviations of TIP4P/20055

and TIP4P-FB (which is already substantially smaller than6

the deviation of OPC4 that reaches ≈13kg/m3).7

The temperature dependence of the water self-diffusion8

coefficient (DOW ) is presented in Figure 3C. At tempera-9

tures below ≈320 K, all water models, including the present10

one, converge to values matching experiments, except for11

OPC4 that diffuses slightly faster than the other water12

models. At high temperatures (T >≈ 320K), all water13

models deviate from experiment in a similar way yielding a14

somewhat too slow dynamics. Over the whole investigated15

temperature range, all the models show a very similar per-16

formance with a MAPE of ≈ 7%, see Table 4, except for17

TIP4P/2005 with a bit smaller MAPE of 3.1%.18

With good agreement with experiments that our model19

has been optimized against, the next question to address20

is whether it also predicts correctly other physical proper-21

ties. To this end, we have computed a set of additional22

properties, namely εN , ρ300K, γ, η , and Tmelt (see Table 4,23

Table S2, Figure 3, and Figure S4).24

One property our model was not a priory optimized25

against is the temperature dependence of εN , i.e., the nu-26

clear contribution to εr, see Figure 3D. Within the present27

non-polarizable simulations, it represents the only contri-28

bution to the dielectric constant, while as a reference it29

can be computed by dividing the experimental total dielec-30

tric constant εr at a given temperature15,34 by the infinite31

frequency dielectric constant at the same temperatures.19
32

The very good agreement of the present model with ex-33

periments in the whole temperature range is remarkable,34

particularly in comparison to the other water models (Fig-35

ure 3D).36

We also calculated the pressure dependence of the den-37

sity at 300K (ρ300K), see Figure S4. The response to38

pressure of our models is slightly offset with respect to39

the other reference models remaining, however, within40

4 kg/m3 from experiments in the whole investigated pres-41

sure range. Together with the proper description of water42

densities at different temperatures, this agreement shall re-43

sult in a correct description of the isobaric (κp) and isother-44

mal (αT ) compressibilities. All water models yield very45

similar values of surface tension within 4 mN/m below the46

experimental value of 71.68 mN/m at 300 K (Table S2).47

All considered models also do a good job reproducing the48

viscosity of water at 300 K and 1 bar, falling slightly short49

of the experimental value 0.85 mPa⋅s with values between50

0.80 mPa⋅s and 0.88 mPa⋅s (Table S2). Finally, all wa-51

ter models somewhat underestimate the melting point of52

the Ih ice. Although the present model performs the best53

(see Figure S3), its melting point still lies 17 K below54

the experimental value of 273.15 K. Note also that for55

the TIP4P/2005, TIP4P-FB, and OPC4 water models the56

reported melting points are consistent (within 3 K) with57

previously computed values.35
58
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Overall, using the presently developed optimization1

framework that takes advantage of AI machinery, we were2

able to sample efficiently the water parameter phase space3

and produce a 4-site water model compatible with the4

ECC framework (i.e., possessing εr ≈ 45) with a very good5

performance, which is comparable with that of currently6

widely employed 4-site water models such as TIP4P/2005,7

OPC4, or TIP4P-FB. It should be stressed that it was by8

no means obvious from the onset that it is at all possi-9

ble to generate a non-polarizable water model with such10

a low value of a dielectric constant (truly reflecting only11

the contribution from nuclear motions) that reproduces12

experimental properties of liquid water so well. Most im-13

portantly, we identified a sizable region of the parame-14

ter space encompassing this model that yields high-quality15

ECC-compatible water models. This will allow us to per-16

form future modifications of the water model if needed to17

accommodate solutes within the charge scaling ECC ap-18

proach, such as simple ions or charged biomolecules (or19

fragments thereof).20
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